How to solve False position method in Matlab.

False  Position Method.

 Hi everyone, I wrote a code that finds the root of the equation using False Position Method. I would like to ask that, how can I plot the root as a function of iteration number and approximate error as a function of itteration number? Thanks in advance to all who want to help!

False Position Method.


F = @(x) 1000*x^3 + 3000*x – 15000;

X_l = 0;

X_u = 4;

If f(x_l)*f(x_u) > 0

    Fprintf(‘There is no solution in the given interval’);

    Return

Elseif f(x_l) == 0

    Fprintf(‘%f is the solution’,x_l);

Elseif f(x_u) == 0

    Fprintf(‘%f is the solution’, x_u);

End

Fprintf(‘I xl xu xm\n’);

For I = 1:1000

    Xm = x_u – (x_l-x_u)*f(x_u)/(f(x_l)-f(x_u));

    Fprintf(‘%i %f %f %f\n’,I,x_l,x_u,xm)

    If abs(f(xm)) < 0.0001

        Return

    End

 If f(x_l)*f(xm) < 0

     X_u = xm;

 Elseif f(x_u)*f(xm) < 0

     X_l = xm;

 End

End

Hi everyone, I wrote a code that finds the root of the equation using False Position Method. I would like to ask that, how can I plot the root as a function of iteration number and approximate error as a function of itteration number? Thanks in advance to all who want to help!

F = @(x) 1000*x^3 + 3000*x – 15000;

X_l = 0;

X_u = 4;

If f(x_l)*f(x_u) > 0

    Fprintf(‘There is no solution in the given interval’);

    Return

Elseif f(x_l) == 0

    Fprintf(‘%f is the solution’,x_l);

Elseif f(x_u) == 0

    Fprintf(‘%f is the solution’, x_u);

End

Fprintf(‘I xl xu xm\n’);

For I = 1:1000

    Xm = x_u – (x_l-x_u)*f(x_u)/(f(x_l)-f(x_u));

    Fprintf(‘%i %f %f %f\n’,I,x_l,x_u,xm)

    If abs(f(xm)) < 0.0001

        Return

    End

 If f(x_l)*f(xm) < 0

     X_u = xm;

 Elseif f(x_u)*f(xm) < 0

     X_l = xm;

 End

End


Post a Comment

0 Comments